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The purpose of this article is t.o outline a method, based on the principles 
of analyticity and unitarity in the t channel, which may help to determine 
some dynamical properties of the Regge parameters a(t) and o(t). 

In the introduction we list various applications of this method, and discuss 
the role of crossing symmetry and unitarity in all three channels in relation 
to the uniqueness of the solutions. 

We derive the unitarity condition satisfied by the partial wave amplitude 
A(1, t), for 1 complex, for a relativistic, two-body scattering process. Upon 
neglecting intermediate states of more than two particles, the unitarity condi- 
tion can be expressed in terms of Regge parameters. An approximate form 
for the unitarity condition, accurate at low 1, is nest. derived. This form will 
be used for numerical work. 

In Section III we show, in the relativistic case, that the functions a(t) and 
s(t), describing a boson Regge pole, are analytic with only right-hand cuts, 
in addition t,o those arising from the crossing of Regge trajectories. Our proof 
is based on two assumptions: (1) validity of t,he Mandelstam representation; 
(2) analyticity of d (1, t) in the whole 1 plane, with at most poles and essential 

singularities. The consequence of the existence of essential singularities at 
1 = - 1, -2, -3, . in relation to a(t) and B(t) is especially discussed. Finally, 
we not,e in this section how the preceding results are modified if t#he Regge pole 
heing considered is a Fermion. 

In sction IV we write dispersion relations for a(t) and b(t). These, together 
with the unitarity condition of Section II, constitute a tentative method for the 
dynamical determination of the Regge parameters. We outline an extension 
of our method which is appropriate for discussions of Fermion Regge poles. 
The behavior of a(t) and o(t) at the elastic ‘or inelastic thresholds is derived, 
and applied to perform subtractions in the dispersion relation for p(t). 

Findly, in Section V, we turn specifically to r-r scattering and discuss an 
approximation which might possibly lead to a reasonably accurate description 
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of this process. Estimates of the range of validity of the approximation are 
made. 

I. INTRODUCTION 

The past year has seen a wealth of new experimental evidence indicating the 
existence of many new states frequently interpreted as dynamical resonances. 
At such a time, it is especially important to have at hand a method with which 
to discuss the properties of these composite states. 

The basis for such a method was laid by Regge (I), who studied the behavior 
of the scattering amplitude, as determined by the Schrddinger equation, when 
dynamical resonances are present. He was able to show, for large momentum 
transfer 1, that these amplitudes take an asymptotic form -/3(s) tcl(*)/sin ~CX( s) , 
A ‘prescription to obtain the Regge pole expansions of two-body field theory 
amplitudes was soon given (2)) and the conjecture made that the nucleon (3)) 
or possibly even all strongly interacting particles (4), were composite in the 
sense that they would all lie on Regge trajectories and appear in the dispersion 
relations with the Regge asymptotic behavior. 

So far, attention has been directed: (a) towards establishing rigorously 
various properties of the complex angular momentum theory in potential scatter- 
ing (and, to a lesser extent, in field theory) ; (b) to the problem of understanding 
the relationship of the Regge asymptotic behavior to the question of bound 
states and subtractions in the Mandelstam representation; and (c) to predict 
the results of various high-energy experiments and their relation to low-energy 
resonances in crossed channels. This work has been summarized in reports given 
at the recent CERN Conference (5-8). 

We discuss in this paper a possible method’ to determine some dynamical 
properties of the Regge pole parameters a(t) and p(t). The quantity a(t), it 
will be recalled, gives the location of a Regge pole in the complex angular momen- 
tum plane, while /3(t) is related, at the pole, to the coupling strength of the 
Regge particle exchanged. 

The dynamical determination of the Regge pole parameters is of interest for 
several reasons. 

(i) The application of the Regge pole hypothesis has been made to discuss, 
for example, ?T?T, TN, and NN-scattering. Here, two experimental facts stand 
out: (a) the total cross sections appear to approach a constant value as s gets 
larger and larger; (b) the angular distributions show characteristic diffraction 
peaks. 

1 After completion of this work, we received a paper by G. F. Chew (6) in which this prob- 
lem is discussed from a viewpoint similar in spirit but quite different in substance from 
ours. 
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From the optical theorem, we know 

%t(S) s --+ o. -f (l&r/s) Im A(s, 0). 

Combined with the Regge asymptotic form for the amplitude, this means (9) 
that ai 5 1, for each Regge trajectory i. This suggested (2,lO) the existence 
of a Regge trajectory with the quantum numbers of the vacuum and a(O) = 1, 
the Pomeranchuk trajectory, which would result in a constant total cross sec- 
tion in the high-energy limit. Moreover, exchange of Regge particles was shown 
to lead, in the simplest cases, to angular distributions with the characteristic 
diffraction form 

du/dt s--+00 
+ F(t) S2a(t)-2. ia1 

Once the functions a(t) and p(t) have been determined by some method, 
Eq. (2) will become a definite and precise prediction for the angular distribu- 
tion, rather than a prediction about its general shape. 

Secondly, if we are able to determine a(t) and p(t) for the Pomeranchuk 
trajectory, we could predict the position and width of any resonances that might 
lie on this trajectory (11). The same also holds, of course, for all other trajectories. 

(ii) Gell-Mann (‘7) has proposed a set of conditions which, if satisfied by a 
given trajectory, will ensure that such a trajectory will not produce a ghost. 
Whether or not the Pomeranchuk trajectory, for example, satisfies this condition 
is a question that can be settled only on the basis of a detailed knowledge of the 
functions a=(t) and p,(t). 

(iii) The Regge pole conjecture seems to clarify considerably the question 
of bound states and their relation to the number of subtractions in the Mandel- 
stam representation (1, 3, 12). One finds, according to the Regge hypothesis, 
an asymptotic behavior A(s, t) -+ 8+m P(t)s”“@‘/sin mm(t), where am(t) 
is the position of the Regge pole which lies furthest to the right in the complex 
angular momentum plane. Suppose that for some t, the Re a,(t) < 0. Then the 
amplitude will converge as s -+ cc) at a rate which, according to Froissart (9)) 
precludes any arbitrary subtractions in s. By analytic continuation in t, one 
finds that all subtraction terms are determined. In this sense, the assumed Regge 
asymptotic behavior for the amplitudes provides a set of boundary conditions 
which completes the S-matrix description of a two-body scattering process. It is 
most important to see the above properties of am(t) resulting from a dynamical 
determination of this quantity. We should like to remark, however, that the 
question of the number of arbitrary quantities needed in the theory (12) still 
appears puzzling to us. This is because it is not yet clear that a dynamical method 
can be given for calculating cy( t) uniquely, without arbitrary constants appearing. 
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Thus, although there may be no undetermined subtraction constants, there may 
be undetermined constants in a(t). We have not yet investigated this question 
with regard to our equations for determining a(t) and P(t). 

In this paper, the principles of analyticity and unitarity are applied to derive 
dynamical equations for the Regge pole parameters CX( t) and fl( t) . 

In Section II, we discuss the analytically continued partial wave amplitude 
and the unitarity condition relating the Regge parameters. We wish to emphasize 
strongly at this point some of the assumptions to be made here. These are: 

(i) Validity of the Mandelstam representation with real singularities only. 
(ii) That the partial wave amplitudes may be analytically continued to 

complex 1 without encountering natural boundaries. The possibility of essential 
singularities, in particular (1S)z those at 1 = - 1, -2, . . ., is not excluded here 
or in the discussion of the analyticity of a(t) and p(t). 

(iii) We make use of a “chopped off” unitarity condition in which only two- 
particle intermediate states are kept. We do not thereby limit ourselves to 
elastic scattering. This approximation we do not regard as essential. 

Whether or not a given set of intermediate states can lead to a reasonable 
description of a scattering process depends on the particular problem considered. 
We discuss what such an approximation might consist of in considering the appli- 
cation of our method to ?r*-scattering. 

(iv) The unitarity condition which we shall use for later numerical work is 
approximate in that it holds for a(t) near the real axis, i.e., when Im a(t) is small. 
We feel that this approximation can be improved upon once a way is found to 
express the partial wave amplitude entirely in terms of Regge parameters without 
a background term. For purposes of correlating high-energy data in the direct 
channel with low-energy resonances in the crossed channel, which is the most 
natural and important starting point for the application of our dispersion 
relations, this approximation already seems reasonable. 

(v) Recent discussions (14, 15) of Fermion Regge poles indicate that the pole 
parameters are discussed more conveniently as functions of fi rather than t. 
In this event, the dispersion relations we derive must be modified. This is carried 
out in Section IV, 

(vi) The situation in which Regge poles cross accidentally as indicated in 
potential theory (16-18) is discussed elsewhere (18). 

In Section III we discuss the analyticity of a(t) and /3(t) and show that these 
functions have only right-hand cuts, in addition to any cuts arising from the 
crossing of two Regge trajectories. Here we discuss a possible essential singularity 

2This possibility was raised by Gribov and Pomeranchuk in connection with their dis- 
cussion of the consistency of the conditions of unitarity and the analytic continuation of 
the partial wave amplitude. We learned of their work first from M. Gell-Mann (private 
communication), t.o whom we are also grateful for a helpful discussion on this point. 
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in the partial wave amplitude at I = - 1, -2, . . . , and show that it is con- 
sistent with unitarity and does not alter the fact that CY(~) and /3(t) have only 
the above-mentioned cuts. 

In Section IV, analyticity and unitarity are used to write dispersion relations 
for CX( t) and p(t) . We consider possible subtractions in the dispersion relations, 
and the threshold behavior of CY and p. Other conditions that may aid in determin- 
ing the solution are discussed, in particular the requirements that a;(O) 5 1 and 
Im ai >= 0 in t,he physical region may be useful. 

Finally, in Section V, we turn to *n-scattering and write dispersion relations 
with subtractions for the Pomeranchuk and the p trajectories. The validity of 
the approximations involved is briefly discussed for this case. 

In closing this section we wish to raise the following points. We have made use 
of a partial wave expansion in the t-channel, a unitarity condition in the t- 
channel, and the analytic properties of (Y and 0 as functions of t. The only place 
we have been able to use unitarity in the direct channel s is by re- 
quiring ai s 1, and crossing symmetry has entered not at all. Our method 
for the dynamical determination of the Regge parameters therefore refers 
almost exclusively to one channel. This fact must mean that much physics is 
left out in our considerations. In particular, no bootstrap mechanism is included 
here. 

At present’, we understand these circumstances t,o mean that our method 
for the calculation of (Y and & in its present restrictive formulation, cannot yield 
a uniqzce determination of these quantities. This can be seen by considering non- 
relativistic scattering where the Regge parameters also satisfy the same disper- 
sion relation and unitarity condition, yet the solution is not unique unless the 
potential is specified. Our hope is that by supplying additional information, such 
as the condition oli(O) I 1, the threshold behavior and the value of the or,(t) 
and p,(t) at some point where it is known from experiment, we may achieve a 
unique solution. We note, moreover, that supplying additional information as 
described above should in no way prevent one from making numerous predictions 
using this method. 

The lack of uniqueness which will arise here is of a type that we expect to be 
removed once we can make full use of crossing symmetry and unitarity in the s 
and u channels to carry out self-consistent or “bootstrap” calculations, a possi- 
bility that should present itself once a representation of the scattering amplitude 
solely in terms of Regge parameters is achieved. 

Further questions arise. What does this method mean in terms of more familiar 
concepts? Aside from uniqueness problems, can this method lead to a reasonable 
understanding of the Regge parameters-and all t,he physics they summarize- 
or must one include, to list just one alternative, a background term in order to 
get sensible results? These questions all remain to be investigated. 
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II. THE ANALYTICALLY CONTINUED PARTIAL WAVE AMPLITUDE AND THE 
UNITARITY CONDITION 

It is well known that the conventional partial wave amplitude (I a nonnega- 
tive integer) for the scattering process a + b 4 c + d (Fig. 1), in which the 
particles have, respectively, masses m, , mb , m, , md , can be expressed as 

1 =- #. ,:&QJ-mz gy----#I s 
- m,” + 2 (ma2 + qt)(mc” + qi2) Dz~(~, s) 

+ (-1)’ O” du 
?F s- uo 2!& Qi 

(3) 

Q? - ma -mi+2+J~)D,:(u,f), 

if 1 is large enough so that the integrals in (3) converge. 
In the equation, qj and qi are the c.m. momenta of the incoming and outgoing 

particles in the t-channel, respectively, j is the state a + b and i is the state 
c + d, and DIj(t, s), D;( t, u) are the absorptive parts of the scattering am- 
plitude Aii(s, t, u) in the s and u channels. Since &t(x) is a meromorphic func- 
tion of I with poles at the negative integers E = - 1, -2, . . . , Eq. (3) provides 
an analytic continuation of A (I, t) , if the integrals on the right side of Eq. (3) 
converge (19). For large z, &l(x) 0: l/z’+l, hence the integrals in Eq. (3) con- 
verge uniformly in the region Re 1 > Re CY if Bi”j( t, s) and Di‘j (t, U) diverge no 
faster than so1 and Us, respectively, for large s and u. The factor ( - 1) ’ for Z 
complex can be defined in various ways; for example, we can define it to be 
either ei”’ or e --isL. However, we observe that (-1) ’ for Z an integer takes the 
value fl according as 1 is even or odd. We can therefore choose the two in- 
dependent amplitudes 

(4) 

- WZd” + 22/(ma2 + qi2)(md2 + qi2) 

which correspond to amplitudes with plus or minus signature (2). 
Making use of the formula (20) 

Qz(z) = 2Iy2z + 2) 
I-2(1+ l) (q-z-1.(,+ 1,z+ 1;,,.2;$-), 
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t 

FIG. 1. The scattering process a + b + e + d 

we obtain 

B$(Z, t) = &(I, t)/(qi *j>” = $l++y) I 
n- 

m 

0 ( 

s - ma2 - mc2 + W(ma2 + qj2>(mc2 + qi’) - %i4% -z-lD’-(t s) 
80 4 > 

21 2 

X F I+ l,Z+ 1;2Z+2, 

4qi Qj - 
s - ma2 - mcz + 2d(ma2 + Qj2)(m,2 + 4;‘) - 

ds 
2qiqj 

f 
u-ma2 - md’ + W(ma2 + qj")(md" + pi21 - 2qi qj 

4 > 
--I-’ Dy,ct uj 

21 7 

(5) 

XF Z+l,Z+1;21+2; 
( 

4qi Pi - 
u - ma2 - wi2 + 2d(ma2 + qj2)(md2 + qi2) - 2qi qj 

valid in the region Re 1 > Re CY. We can observe at this point that the function 
B$(Z, t) defined in (5) is a real analytic function satisfying 

B$(Z, t> = (B$(E*, t*))*. (61 

We shall now show that each of the amplitudes As (1, t) satisfy the unitarity 
condition. We first define (A$(& t) ) + as 

(&.(~, t>>+ = ; j-1 &Q’ (” - m: - m: + WhQ2 + qxme” + Yi2)) oHj(t-, &.) 
2qi 4j 

*i 
7r s u;$jQ~(u-m,2- 
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In the above, t- = t - ie. For Re 1 > Re cr, we have 

[&-j(Z, t) - (A&(1, t>>+1 
2i 

1 =- =-&Ql(” - ‘na2 -m:+z (m2+q.2)(m2+q.2) $y)pii(t, 8) (t-5) 
t 3 

md2 + 2d(ma2 + qj%m” + qt2> 
2% Pj 

p,,(t u) 
$3 9 f 

Now, the unitarity condition for the scattering amplitude A(s, t, U) reads (21) 

pij(t, S) = c e(t - tk) (II;&, s’))*D;j(t, so) ds’ ds” 
k bqkqiqir [ss, x2 + XL” + xi2 - 2xxk’x; - 1 

(7) 
(LX‘& u’))*Dij(t, u”) du’ du” 

+ /.-.I4 x2 + yk” + y[” - 2xyk’y; - 1 1 7 t > to 
In Eq. (7)) 

x = [s - ma2 - mc2 + 22/(ma2 + Qj2)(mc2 + Pi2)1j2qi9i , 
xk’ = [s’ - I,%,2 - ???fA + 22/(W2 + qj”)(mil + pk2)]/2qiqk, 

x[ = [S" - 1322 - dl + 2d(ma2 + q?)(mil + qk2)1/2qjqk, 

yk’ = [u’ - ?,t,’ - mt2 + W(mc2 + qi2)(mE2 + qk2)1/2qiqk , 

y; = [u” - ma2 - d2 + W(ma2 + qj2)(mi2 + (rk2)1/%jqk , 

where qk is the c.m. momentum in the intermediate state Ic which contains two 
particles whose masses are mkl and vtk2 , and o is one half the c.m. energy of the 
system. The integration above is over the region where 

II: > xk’$ + ,,( 1 - $)( 1 - $‘) 

for the first term in (7)) and a similar region for the second term, 

e(x) = 1 
0 1 

tk is the t.hreshold for the intermediate state Ic, 
multiparticle state with the lowest energy and 
state i. Likewise, 

xc0 
x > 0, 

and to the mass squared of the 
the same quantum numbers as 

Pij(t, U) = C ’ 
(D&(t, SI))*Dij(t, u”) ds’ dU” 

k bqkqiqjr x2 + x;” + y;” + 2xxk’y; - 1 

(DXt, u’))*D;j(t, s”) du’ ds”) 1 
(8) 

1//x2 + y;" + 2;" i %$y,' - 1 ect _ t > k , t > to 
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with a similar range of integration. From the formula (Z,$?) 

we obtain by substituting (7) and (8) into (61 and some algebraic manipllla- 
tion 

[A+j(I, tj - (A$(l, t)]+ 
2i = 7 z (Adz, r))+Akj(l, t>e(t - tp), t > to, (10) 

valid in the region Re 1 > Re a. Now bot’h sides of Eq. (10) are analytic funem 
tions of 1, and by analytic continuation (10) holds in the whole region of Z where 
A(& f) is analytic. 

For the case of equal mass, elastic scattering, the argument of Q, in A*((, tr 
of (10) is always greater than 1. As &l(z) is continuous on the real axis of 2 
if z > 1, we have in the elastic scattering case 

(A*(& tjj+ = (A*(z*, t))*, 

and (10) takes the familiar form 

[A*(& t) - (a”(z*, tj ) *1/2i = (y/w) (il(z*, t)) *A(& t). (Ill 

Writing rZ+( 1, t) = (w/y) (S*( I, t) - 1) /2i, we have also from (11 j 

s*(z, t) w-(z*, f)j* = 1. (1”; 

If we take Z = a(t) , where a(t) is the location of a Regge pole which occurs in 
some amplitude A,i( I, t) , omitting signature and comparing the residue of both 
sides of (10) at Z = 01, we obtain 

(13) 

Equating the real part and the imaginary part of (12) would give us two alge 
braic equations relating a! and @ij along the positive real axis t > to . 

Several interesting consequences follow from (13). First, as was pointed out 
by Gribov and Pomeranchuk (~5’3)) Eq. ( 13) requires that @,Jt) is factorized 
and we have relations like (g/t) 

PLi( t) = P?jCt)/pjj( t) * (14) 

This can be proven by considering (13) as a matrix equation 

where 

p(t) = v(t)b(t) (1.5) 

Q(t) = z% (ilji(ol, t))+e(t - tj). 
w 
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Except for some special values of t, v(t) can have only one eigenvector with 
eigenvalue unity. In this case, if we view p,(t) = (pIi( &(t), . . . , pni(t)), 
i = 1,2, .*. ) n as a vector, then p,(t) = v(t) p,(t) and (14) follows, for t > l,, . 
We shall prove in the next section that p(t) is an analytic function of t; hence by 
analytic continuation (14) is true for all t. 

Secondly, from (14) we see that if any two of p,j(t)) &i(t) , and /?jj(t) are non- 
zero, then the third is nonzero. Hence, if a Regge pole occurs in any two of the 
amplitudes A&, t), Aij(Z, t), Aii(Z, t), it automatically occurs in the third. The 
unitarity condition thus implies that the same Regge poles occur in all channels 
(2, S, 24). Also, since in the unitarity condition (ll), we include only those 
intermediate states 1~ which have the same conserved quantum numbers as 
states i and j, a Regge pole trajectory is characterized by a set of conserved 
quantum numbers. Since A*( 1, t) satisfy (13) separately, a Regge pole trajectory 
has a definite signature (2). 

Equation (13) also leads directly to the form of the unitarity condition as it 
will be used in this work. If we now write 

Aij(Z, t )  CZ 
&j(t) 

-7r(2CY(Q + l)(Z - a(t)> ’ 

valid for 1 x a(t), then we obtain by substituting (16) into (13) 

(17) 

It will prove very convenient to introduce, instead of &i(t), the real analytic 
function 

Cij( t) =; -y$;y) ) (18) 

which, as follows directly from (17), satisfies the unitarity condition 

Cij( t)&@(t) = & T z C~&cje(t - td. 
We wish to emphasize here, however, that the unitarity condition as expressed in 
(17) is approximate in two important respects. 

First, multiparticle intermediate states of more than two particles have not 
been included. The extent to which a scattering process can be described by two- 
body intermediate states is not clear, here or in any such application of the 
unitarity condition. We shall discuss this question briefly for ?ra-scattering in 
Section V. We note, however, that this short-coming can probably be removed, 
at least in principle, when techniques for handling multiparticle intermediate 
states are developed. 

Second, we have approximated AQ(Z, t) by (16)) which is valid only for 
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1 M a(1), and hence is true only for Im a(t) small. Attempts to improve this are 
being made. At any rate, we know that, for some range of t extending upwards 
from the elastic threshold, Im a(t) is indeed small, and by putting enough 
subtractions in the dispersion relations we can expect that the contribution from 
large t is not significant. We might therefore expect that the functions a(t) and 
C(t) which we obtain are accurately given for t in the above-mentioned range. 
This point is also discussed further in Section V. 

II. THE ANALYTICITY OF a(t) AND P(t) 

In this section we shall present arguments to make plausible the hypothesis 
that the functions a(t) and P(t) , for a boson trajectory, are analytic functions of t. 
We shall present two different “proofs”: ii) starting from the Mandelstam 
representation and the assumed Regge behavior (2) of the amplitude B (s, t) ; 
and (ii) from the assumption that A( I, t) can be analytically continued to the 
whole 1 plane. In the proof, the possibility of essential singularities, in particular 
(IS) those at I = -1, -2, .. . , is indicated as well as the possibility of the 
crossing of two Regge trajectories. If there are complex singularities in the two- 
body scattering amplitude A (s, t) , then an extension of our second proof will 
show that a(t) and p(t) may have additional singularities, the location of which 
will be determined by that of the singularities in A(s, t). 

If we assume the Mandelstam representation and the Regge asymptotic be- 
havior to be valid, then we have 

ilij(S, t) 
/xt) r(a(t) + ?4J 

/s/‘m+ sin m(t) TI(a(t) + 1) 
e-i”s a(t) 1 

+i 4qij ( > 
2 (1 f eeirrcrct)). 

(20) 

Since we can vary s arbitrarily, a(t) and p(t) must be analytic functions of t 
with the same cut in t as A(s, t) for fixed s, i.e., a right-hand cut from to --+ 00 
and a left-hand cut from c ?)ai2 - s - ~0 to - m, where b and ~0 are the elastic 
thresholds in the t and u channels. However, the location of the cut in a(t) and 
/3(t) must be independent of s, so if we let s --+ m , we see that no left-hand cut 
can in fact be present. sow the absorptive part in the s channel 

D8(s 
7 

t) = A(s + ic, t> - A(s - ie, t) , s > o 
2i 

is real in the physical region of the s-channel, therefore 

(21) 

p(t) I?(a( t) + x/2> 1 e-““s 
( ) 

u(t) 
r(a(t) + 1) &r -4YiYj 
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is real in the physical region of the a-channel. Together with the fact that a(t) 

and p(t) eViraCt) have no cut on the real axis up to to, we see that they are real 
on the real axis up to to . We conclude, therefore, that a(t) and fi( t)ewiaact) are 
both real analytic functions of t, with only a right-hand cut starting from to . 
The above argument is not applicable at a point where two Regge trajectories 
cross. 

It is also possible to establish the desired analytic properties of a(t) and /3(t) 
without assuming the Regge asymptotic behavior for the amplitude A(s, t) . 

We first evaluate explicitly the discontinuity across the left-hand cut of 
A(Z, t) . We shall, for simplicity, take m, = mb = na, = md = 1 and SO = u0 = 4. 
We then obtain 

h*.(z ,)=A*(Z,t+is)-A*(Z,t-ie) 
, 2i 

1 
?r 4-t $ Qz (1 + t _ T- i) pads, 4 - t - s> =-- 

s 

2 ?r (I s4 Qz (1 + t _ y+ i) d4 - u - t, u) s 

+ a ~p’tp4’ 2ds. eFizrpz (- 1 - g4) D”( t + ie, s) 
t-4 

*f s 

-(L-4) 

e D”(t - ic, u), 
4 

(22) 

for t < 0. 
Since the range of integration in Eq. (22) is finite, this equation gives h*( I, t) 

for all 1. We thus see from Eq. (22) that h*(Z, t) is a meromorphic function of 
1, with simple poles at the negative integers Z = - 1, -2, -3, . . . . It was shown 
by Gribov and Pomeranchuk (13) that an essential singularity is required to 
exist in A (I, t) at these points. 

If we write 

(23) 

where n is large enough for the integral to converge, then Al*( I, t) is an analytic 
function of t with a right-hand cut only. Since no Regge pole can come from the 
term 

F O s I Ia* - rr --mat (t’ - t)t’n ’ 
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all Regge trajectories are determined by 

or 

da(t) _ aF(a, t) 
/ 

aF(% 1) 
dt at aff (24) 

Here the signature has been omitted. 
We shall first investigate the right-hand side of (24) at the points a! = - 1, 

-2, -3, ... . Let us assume that the most singular term of F(Z, t) at 1 = -n, 
is of the form (25) exp xiai(t)/(Z + n)i, where i is a number (not necessarily 
an integer). Then we have, at cr = -n, 

da -= 
dt 

-c gL/ -c ( = 0. 
a CY 

(25) 

This result is unchanged if the most singular term of F(1, 2) has the form 
exiai(t)l(l+n)' 

e 
e . 

Thus the right-hand side of (24) is regular at a! = -n, for this type of essential 
singularity. 

The right-hand side of (24) is thus seen to be an analytic function in t with 
only a right-hand cut, and entire in CY, provided that aF(a, t)/aa # 0 for all 
(CX, t) . Solving (24) gives (Y as an analytic function of t with a right-hand cut 
only. Then P(t), which is equal to --a(2a(t) + 1) Res (A,(Z, t))znarr(tj, is 
also an analytic function of t with only a right-hand cut. 

If, at a given point (a.~, tb), we have dF(a, t)jaa = 0 besides F(a, t) = 0, 
which is the condition that two or more Regge poles cross at the point, then 
a(t) is not analytic at tb , since da(t)/dt equals infinity there. Assume CY(~*) is 
not infinite, then tb is a branch point, for a(t) and a branch cut will arise. 

Since Aij(Z, t)/(qiqj) ’ is a real analytic function of t and 1, F( I, t) /(q;qj) ’ is a 
real analytic function of t and 1. Thus for t negative and real, F(a, t) = 0 implies 
Fb*, t) = 0. Therefore, either there are two Regge pole trajectories a,(t) and 
cy2( t) which are complex conjugate to each other for negative t, and hence satisfy 

al(t) = az*(t*) (26a’) 
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for all t (as al(t) and mz( t) are analytic functions of t) , or 

a(t) = a*(t) (26b) 

for t negative and a(t) is a real analytic function of t. In the latter case, &i(t)/ 
(aiai) O1 is a real analytic function of t. In the discussion that follows, we shall 
assume that this in fact is the case. 

The location of the right-hand cut of a(t) and p(t) is seen to coincide with that 
of the right-hand cut in t of the scattering amplitude A (s, t) , hence it starts from 
the mass squared of the lowest energy multiparticle state which has the same 
conserved quantum numbers (except for the angular momentum) as a(t). 
For example, if we consider the Regge trajectory au(t) which gives the 37r 
resonance I = 0, J = 1 at 787 Mev, the branch cut starts at 9?nX2. 

For a fermion Regge trajectory, it has been found (14,15) that the Regge pa- 
rameters are best discussed as functions of &, in order to avoid kinematic 
singularities. Consider the scattering of a fermion by a spinless boson, for ex- 
ample. There are two partial-wave amplitudes, A(j+, 4) and A@, fi), corre- 
sponding to the two states with the total angular momentum j and parity 
( - 1) i * 1/2e Both of them are analytic functions of fi with branch cuts: (i) 
from &, to a, where to is the energy squared of the lowest mass state having 
the appropriate quantum numbers; (ii) from - dto to - ~0 ; (iii) from --im 
to in . The third kind of branch cut corresponds to the left-hand cut in t in the 
boson case. A generalization of the arguments presented in this section then shows 
that a(&) and L&j(&) are analytic functions of z/t with a right-hand cut 
from &, to co and a left-hand cut from-&, to - 00, in addition to those 
arising from the crossing of two Regge trajectories. 

IV. DISPERSION RELATION FOR THE REGGE POLE PARAMETERS 

Tn the preceding section we have shown, assuming the validity of the Man- 
delstam representation and that A (1, t) is an analytic function of 1 (possibly 
with essential singularities), that a(t) and p(t) are analytic functions of t with 
branch cuts only along the positive real axis. Application of Cauchy’s theorem 
to these functions then leads to dispersion relations of the following general 
form: 

(27) 

Here r is the contour of a region containing t in which a(t) and a(t) are ana- 
lytic. If a(t) and p(t) have only branch cuts whose locations are known, it would 
generally be more convenient to take the contour r along these known cuts. 
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Suppose, in particular, that a(t) and p(t) are associated with a boson trajec- 
tory and have the right-hand cuts of Section III. Then we have for each Regge 
trajectory the two algebraic equations (13) which, expressing the unitarity 
condition, relate OL( t) and p(t) of all Regge trajectories on the cut along the posi- 
tive real axis, plus the two coupled nonlinear integral equations (27) and (28) 
which must be satisfied by the four unknown functions Re CX( t), Im a(f), Ite 
p(t) , and Im p(t) for each Regge trajectory. 

For a Fennion Regge trajectory which does not cross any other t,rajectories, 
the dispersion relation reads (14) 

where cz+( t’) and CL( t’) are the Regge poles of A (jf, &) and A (j-, fi) 
respectively, and similarly for fl(fi). The functions A (j+, 4) and A (j--, fi) 
satisfy the unitarity condition separately and, as before, it relates q(f) to 
b*(t) on the branch cuts. 

In order to avoid complications arising from the crossing of Regge trajectories, 
dispersion relations should be written for a set of algebraic functions of a(t) 
and p(t), instead of a(t) and p(t) themselves. This is elaborated in another 
paper (18). 

We have not yet shown that solutions to the four coupled equations for each 
trajectory (27, (28)) and (13) exist, nor have we investigated under what con- 
ditions they may be unique. 1~ the remainder of this section we shall discuss 
various questions that bear either on the question of subtractions, or on condi- 
tions that can be added to help select a unique solution. 

The singularity of a(t) and p(t) at infinity is not known in the relativistic 
case. In the case of potential scattering in the potential 

it has been found that (BY) 

(29) s 

m 
&J*h-&* 

4qZ) 
nl2 

,,2,&+ -n--2 - %l 

s 

02 
--?r(2n - 1) ,2 d/.L2a(p2) 

(30) 
w 

,n = 1,2,3, ... , 

where cam is the nth Regge trajectory and q8 is the energy. We see from this 
that no subtractions are necessary, although it may be convenient for practical 
purposes to make some. In the relativistic case, therefore, it may be reasonable 
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to conjecture that cz( t) and /3(t) have no singularity at infinity. This is the most 
appealing conjecture from the theoretical point of view. However, to be on the 
safe side, we shall usually prefer to make subtractions. How many subtractions 
are to be made really depends on the specific problem and on what one is willing 
to supply from the outside as subtraction constants as compared t,o what one 
wishes to predict. 

W’e next wish to investigate the behavior of a(t) and p(t) near a threshold. 
This is of interest for two reasons : (i) the behavior of QI( t) and fi( t) near a thresh- 
old can be rigorously established. This information on the functional form of 
of cy(1) and /3(t) , used as a boundary condition in connection with Eqs. (27)) 
(28)) and ( 19)) should help to make the solution of these equations unique. (ii) 
If subtractions in /3(t) are made for those values of t corresponding to thresholds, 
the subtraction constants can be shown to vanish, hence no additional param- 
eters are introduced. 

The behavior of a(t) near the threshold ,in the relativistic many-channel 
problem has been shown by Barut (27) to be the same as in the elastic scattering 
case, if only two-particle intermediate states are considered. We shall apply his 
arguments to obtain the threshold behavior for ,8(t) . 

The unitarity condition for B(Z, t) takes the matrix form 

B(Z, t + ie) - B*(z*, t + iE> 
2i 

= B*( z*, t + ie>p( t)B( I, t + ic) (31) 

where p(t) is the matrix with elements 

pLj(t) = 6ii O( t  - ti) (CjQj) ‘+l”/Cd. 

Making use of the fact that B( 1, t )  = B*( Z*, t * )  , we have 

(32) 

B-y 1, t + ic) - B-y I, t - ic) 
2i = -p(t), (33) 

which gives the discontinuity of B(Z, t) across the right-hand cut. Write 

B-‘(Z, t) = ( Y(Z, t) + R) /cos d (34) 

where 

Rij(Z, t) = p:‘+’ E?wi”c’+1’2)6~j O(t - ti)/U. 

Then Y(Z, t) is analytic in t with only a left-hand cut, since R has the same dis- 
continuity across the right-hand cut as B-‘( I, t) . The matrix Y( I, t) is the ana- 
logue of the Y function previously introduced in the nonrelativistic case (20, 
28). From (34) we have 

B(z 
9 

t> = adj (y + RI 
det (Y + R) ‘OS *I7 (35) 
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and the Regge poles are given by the zeroes of det( Y + R). Now suppose t 
is near the threshold ti of state i so that qi is small, then we have 

det(Y(a, t) + R(a, t)) 

= det(Y(a, 1) + R’(a, tjj + Rii(a, tj[Y(a, t) + R(cY, t)lii = 0, 
( 36) 

where R’( cy, t) is the matrix obtained from R by deleting the element Rii(~, t) , 
and [Y((Y, t) + R(cY, t) ]ii is the cofactor of the element ii of (Y + R). If we 
write F(a, t) = det( Y(Ly, t) + R’(a, t))/[Y(a, t) + R(G+ t)lij, Eq. (36) becomes 

F(a, t) = -q;a+l e--i*(a+1’2)/u, i 37) 

where F ( CY, t) is an analytic function of t in the neighborhood of the threshold fi . 
If Re a(b) > -x, then F(a(ti), ti) = 0. Expanding F(a, t) in a Taylol 

series and writing ai = a( ti) , we find 

or 

Also 

4t) x ai + a(t _ ti) + bq~~i+le+(w~)~ (38) 

P,j(t) = -((~iqj)~“‘~(2a(t) + 1) Res (B(d, t))lzm(,j 

M C( qiqj) ui 

If Re (pi < -44, then (37) shows F( (pi , ti) = 00. Writing (37) in the form 

1 -za(t)-lpa+1/2) 
- = -%li 
F(a, 0 

and expanding l/F(cu, t) in a Taylor series now gives us 

and 

L?(t) 
--3ai-2 ai 

= gqi Pj I (40) 

where a, b, c, d, e, f, g are constants. At the elastic threshold these constants are 
all real and are related (20, 28). We see that for inelastic two-body scattering, 
p,j(t) will vanish at two points, i.e., will vanish if Qi -+ 0 or’ if qj -+ 0, provided 
that either Re a( ti) > 0 or Re cy( ti) < -s. The function p,,(t), however, 
vanishes only at one point. We also see that subtractions made at any threshold 
of p(t) do not introduce new parameters because p,j( t) -+ 0 as t -+ t, . 

There are two other conditions that we would like to mention here. lcirst, 
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Froissart (9) showed that unitarity in the direct channel implies that, for each 
Regge trajectory i, ai 5 1. This condition is the only place where unitarity 
in the direct channel is used in our work. It should be employed to help select 
unique solutions of the integral equations. Another condition that might be 
imposed is Im ai 2 0, if Re (YL > -g, and t is physical. This has so far been 
proven only in potential theory (1 )-therefore it would be preferable to have it 
appear as a consequence of our equations. 

V. A METHOD OF APPROXIMATION FOR THE CALCULATION OF 
REGGE PARAMETERS 

We have seen in the preceding sections that the analyticity of (Y and p together 
with the unitarity condition give us a set of coupled integral equations satisfied 
by the Regge parameters of all trajectories. In practice, however, it is not feasible 
to solve the integral equations which involve the Regge parameters of all tra- 
jectories. We shall see in this section that an approximation to the unitarity 
condition would decouple a(t) and &(t) from all the other Regge parameters. 
(Here, the subscript 1 indicates the lowest mass state with the same quantum 
numbers characterizing the Regge trajectory cy( t) .) The approximation of the 
unitarity condition is good only at low energy (in the crossed channel), and 
as a result, the Regge parameters obtained from this approximation can be hoped 
to be accurate only at low energy. 

We shall illustrate our method by applying it, in the case of ?r?r-scattering, to 
the Regge parameters of the Pomeranchuk trajectory, which is characterized 
by the quantum numbers of the vacuum and a,(O) = 1, and to the p trajectory 
which gives rise to the 27r resonance (I = 1, J = 1) at 750 Mev. Both of these 
trajectories have a branch cut starting from 4mT2, (hereafter, we take the mass 
of a pion to be unity), as there are 2~ states which have the same quantum num- 
ber as the vacuum, or the quantum numbers of the p meson. In the elastic region 
(4 < t < 16) the approximate unitarity condition (17) reads 

1 t-4 I=-- - 

d- 
/L(t) 

Im a(t) t r(aa(t) + 1) ’ (41) 

for both the P trajectory and the p trajectory. The subscript “1” now denotes the 
2~ state. We see that in this approximation, the unitarity condition for each 
trajectory involves only the two parameters al(t) and a(t). The Pomeranchuk 
and p trajectories are decoupled. 

In terms of the function Cij , introduced in Eq. (18)) the unitarity condition 
(41) takes the form 

C,,( t)eira@) = t 
Im a(t) AJ- t-4’ (42) 
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accurate for 4 < t < 16 and Im (Y small. For the p trajectory, we crudely esti- 
mate Im ar,(29) < 0.1, which indicates that approximating A( ‘Y*, t) by the 
Regge pole term is reasonably accurate perhaps up to t - 30. The inelastic 
region starts at 16. However, if we approximate the 47r states by a ?ro state or a 
2p state, we see that (42) would not be modified until t - 45 or t - 119. As 
to the Kk= state, the threshold is at t - 51. This, together with the fact that 
& is still quite small even slightly above threshold of state i or j, as it vanishes 
at the threshold if Re a > 0 or Re a: < -35, indicates that (42) is probably a 
moderately good approximation up to t - 30 or more. 

As Eq. (42) is valid only for small t, we should make as many subtractions in 
the dispersion relations as possible without introducing unknown quantities. This 
should reduce the large t contribution to the dispersion integrals. If CJtj 
vanishes at threshold, we can make two subtractions if i # j, and one if i = j. 
Xow c+,(O) = 1, hence a,( 4) > 1. Also, previous work (29) indicates that it is 
quite safe to assume a,(4) > 0. Therefore, C,(4) = C,(4) = 0, where the sub- 
script “11” has been dropped. We thus have 

Reap(t) = l+‘,P~ml~{;~\p”‘, 

Re C,(t) - ct - 4) = Im C,(t’> dt 
p s, (t’)(f - t) ’ a 

(43a) 

(4%) 

(43c) 

(43d) 

Subtractions have been made for C, and C, at the threshold t = 4, for aP at 
t = 0, and for CZ~ at t = 29. The unitarity condition (42) will be used for t > 4. 
By equating real and imaginary parts of (42)) we obtain 

C,( t)eiTolpcf) = t 
Im 4t> G t-4’ (44%) 

Re C,(t) sin m,(t) + Im C,(t) cos m+(t) = 0, (44b) 

C,( t)eirrrpct) = t 
Im 4t> 6 t-4’ (44c) 

and 

Re C,(t) sin w+,(t) + Im C,(t) cos my(t) = 0. (4W 

The eight equations (44) and (43) can be solved for the eight parameters Re 
C,(t), Im C,(t), Re c+(t), Im a*(t), Re C,(t), Im C,,(t), Re a,(t), Im a,(t). 
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Numerical results will be reported in a forthcoming paper. It should be noted 
that Eqs. (44) may be moderately accurate only up to about t = 30. Thus the 
Regge parameters obtained may be accurate only for t - 30. 

An improvement to (44) by taking care of some inelastic states seems feasible. 
In view of the considerable improvement obtained (SO) by including the 7~ 
state in the self-consistent calculation of the mass and the coupling strength of 
the p meson, we may want to include the scattering processes ?r + o -+ a + w 
and ?r + w + 7r + ?r. Equation (44) will then involve the C functions for these 
two processes. This will make the numerical calculation more complicated, but 
adds no more difficulties in principle. 

As has been stressed in the introduction, the results of a calculation such as 
this will allow comparison with experiment at many points. In particular3 
Jm LyB( 29)) a,‘( 29)) and C,( 29) will determine the width and coupling constant 
of the I = 1, J = 1 2n resonance. The calculation will indicate whether a J = 2 
resonance on the Pomeranchuk trajectory exists at - 1 Bev (if its range of validity 
can be extended up to t - 50), if so its position and width will be predicted; 
C,(O) is related to the total 7~ cross section; c+(O) is related to Us+= - un--p 
and (Ye, (Ye , C, , and C, are all related to measurable angular distributions for 
t 5 0. 
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